Analisi della varianza

Il modello di Analisi della varianza è legato al particolare disegno sperimentale scelto

Noi faremo riferimento al *Disegno Completamente*Randomizzato in cui k trattamenti vengono assegnati

casualmente ad n unità sperimentali

T_1	T_2	T_3	• • •	T_i	• • •	T_k
y_{11}	<i>y</i> 21	<i>y</i> 31		y_{i1}		y_{k1}
•	•	•	•	•	•	•
	•	•	•	•	•	•
	•	•	•	•	•	•
	•	•	•	•	•	•
y_{1n_1}	y_{2n_2}	y_{3n_3}	• • •	y_{in_i}	• • •	y_{kn_k}
\overline{y}_{1} .	\overline{y}_2 .	\overline{y} 3.	• • •	\overline{y}_i .	• • •	\overline{y}_k .

In questo caso il modello statistico assume la forma

$$Y_{ij} = \mu_i + \varepsilon_{ij}$$
 dove $\varepsilon_{ij} \sim N(0, \sigma^2)$

dove Y_{ij} è il valore della variabile risposta in corrispondenza dei trattamento T_i per la j-esima osservazione del gruppo.

 Y_{ij} è uguale al valore atteso della variabile risposta μ_i per il trattamento T_i a cui si somma un errore accidentale. La natura casuale dell'errore viene tradotta in probabilità assumendo per ε_{ij} una distribuzione Normale con media nulla.

La varianza dell'errore, σ^2 , misura la variabilità dovuta a fattori casuali comune a tutte le osservazioni

Dalla normalità di ε_{ij} segue la normalità di Y_{ij} ; solo quest'ultima è una variabile aleatoria osservabile poiche' non saremo mai in grado di osservare separatamente l'errore casuale contenuto nei nostri dati. Importanti assunzioni sono alla base del modello

- LE UNITÁ ALL'INTERNO DEI GRUPPI SONO OMOGENEE
- EVENTUALI FATTORI DI CONFONDIMENTO SONO STATI CONTROLLATI DALLO SPERIMENTATORE

NE DERIVA CHE, A PARITÁ DI TRATTAMENTO, LA VARIABILITÁ OSSERVATA NELLA RISPOSTA É DI NATURA PURAMENTE CASUALE.

ESPRIMIAMO IL VALORE ATTESO DELLA RISPOSTA COME

$$E[Y_{ij}] = \mu_i = \eta + \alpha_i$$
 per $i = 1, \dots, k$

DOVE

- η \longrightarrow EFFETTO MEDIO GENERALE
- α_i \longrightarrow EFFETTO DELL'IESIMO TRATTAMENTO, DIFFERENZIALE RISPETTO A η

SIAMO PASSATI DA k(+1) PARAMETRI A k+1(+1) PARAMETRI

Il modello è sovraparametrizzato

In realtà esistono tra i parametri dei vincoli naturali

$$\eta = \frac{\sum \mu_i}{k}$$

$$\sum \mu_i = k\eta$$

$$\mu_i = \eta + \alpha_i$$

$$\sum \mu_i = k\eta + \sum \alpha_i$$

STIMIAMO L'EFFETTO DEI DIVERSI TRATTAMENTI

Gli stimatori ottimali (sia nel senso dei minimi quadrati sia ottimizzando sulla scala della verosimiglianza) per i parametri originari μ_i sono

$$\widehat{\mu}_i = \frac{\sum_j Y_{ij}}{n_i} = \overline{Y}_i. \qquad i = 1, \dots, k$$

Da cui

$$\begin{cases} \widehat{\eta} &= \frac{\sum_{ij} Y_{ij}}{n} = \overline{Y} ... \text{ dove } n = \sum_{i} n_{i} \\ \widehat{\alpha}_{i} &= \overline{Y}_{i}. - \overline{Y} ... \end{cases}$$

SOLUZIONE SEMPLICE ED INTUITIVA

Il modello di riparametrizzazione utilizzato non è l'unico possibile

SE ESITE UN GRUPPO DI RIFERIMENTO (T_k) POSSIAMO SCEGLIERE UNA DIVERSA CHIAVE DI LETTURA

$$\mu_i = \beta_{(k)} + \beta_i \quad i = 1, \dots, k - 1$$

I corrispondenti stimatori saranno

$$\begin{cases} \hat{\mu}_k = \hat{\beta}_{(k)} = \overline{Y}_k. \\ \hat{\beta}_i = \hat{\mu}_i - \hat{\beta}_{(k)} = \overline{Y}_i. - \overline{Y}_k. \end{cases}$$

Tuttavia la stima dei parametri originari (e delle loro differenze) resta univoca

•
$$\hat{\mu}_m - \hat{\mu}_l = \hat{\eta} + \hat{\alpha}_m - \hat{\eta} - \hat{\alpha}_l = \overline{Y}_m - \overline{Y}_l$$
.

•
$$\hat{\mu}_m - \hat{\mu}_l = \hat{\beta}_{(k)} + \hat{\beta}_m - \hat{\beta}_{(k)} - \hat{\beta}_l = \overline{Y}_{m} - \overline{Y}_l$$

VERIFICHIAMO IL SISTEMA D'IPOTESI

$$\begin{cases} H_0 : \mu_1 = \ldots = \mu_k = 0 \\ H_1 : \mu_l \neq \mu_m \text{ per almeno un coppia } (l,m) \end{cases}$$

Rispetto al t-test:

- Estendiamo il confronto da due popolazioni a k popolazioni
- L'ipotesi alternativa è molto ampia
- La costruzione della statistica test si sposta dal confronto tra le medie campionarie all'analisi della variabilità osservata

SCOMPOSIZIONE DELLA DEVIANZA

DA

$$(Y_{ij} - \overline{Y}_{\cdot \cdot}) = (Y_{ij} - \overline{Y}_{i \cdot}) + (\overline{Y}_{i \cdot} - \overline{Y}_{\cdot \cdot})$$

SEGUE (dopo qualche calcolo ...)

$$\sum_{i} \sum_{j} (Y_{ij} - \overline{Y}_{\cdot \cdot})^2 = \sum_{i} \sum_{j} (Y_{ij} - \overline{Y}_{i \cdot})^2 + \sum_{i} n_i (\overline{Y}_{i \cdot} - \overline{Y}_{\cdot \cdot})^2$$

$$\sum_{i} \sum_{j} (Y_{ij} - \overline{Y}_{..})^{2} = \sum_{i} \sum_{j} (Y_{ij} - \overline{Y}_{i.})^{2} + \sum_{i} n_{i} (\overline{Y}_{i.} - \overline{Y}_{..})^{2}$$

$$DEVIANZA \qquad DEVIANZA \qquad DEVIANZA SPIEGATA$$

$$TOTALE \qquad RESIDUA \qquad DAL MODELLO$$

$$(TSS) \qquad (RSS) \qquad (MSS)$$

$$Y_{ij} = \varepsilon_{ij} + \mu_{i}$$

Scomposizione dei gradi di libertà

N.B.

$$= 2\sum_{i}\sum_{j}(\overline{Y}_{i.} - \overline{Y}_{..})(Y_{i}j - \overline{Y}_{i.})$$

$$= 2\sum_{i}(\overline{Y}_{i.} - \overline{Y}_{..})\sum_{j}(Y_{i}j - \overline{Y}_{i.}) = 0$$

$$\frac{\mathsf{RSS}}{n-k} = \frac{\sum_{ij} (Y_{ij} - \overline{Y}_{i.})^2}{n-k} = \frac{\sum_{ij} (Y_{ij} - \widehat{\mu}_{i})^2}{n-k} = \widehat{\sigma}^2$$

É uno stimatore di σ^2 cioè della variabilità di natura accidentale solo se le osservazioni all'interno dei gruppi sono effettivamente omogenee

FONTE DI **VARIAZIONE**

SS

G.d.l

MS

MODELLO
$$\underbrace{\sum_{i} n_{i}(\overline{Y}_{i}. - \overline{Y}..)^{2}}_{\text{MSS}} \quad k-1 \quad \frac{\sum_{i} n_{i}(\overline{Y}_{i}. - \overline{Y}..)^{2}}{k-1}$$

$$\frac{\sum_{i} n_{i} (\overline{Y}_{i}.-\overline{Y}..)^{2}}{k-1}$$

RESIDUA
$$\underbrace{\sum_{ij} (Y_{ij} - \overline{Y}_{i.})^2}_{\text{RSS}} \qquad n - k \qquad \frac{\sum_{ij} (Y_{ij} - \overline{Y}_{i.})^2}{n - k}$$

$$\frac{\sum_{ij}(Y_{ij}-\overline{Y}_{i\cdot})^2}{n-k}$$

TOTALE
$$\underbrace{\sum_{ij} (Y_{ij} - \overline{Y}..)^2}_{TSS} \quad n-1$$

La nostra statistica test sarà semplicemente il rapporto tra la varianza spiegata dal modello e quella residua

$$F = \frac{\mathsf{MSS}/(k-1)}{\mathsf{RSS}/(n-k)} \, \mathcal{F}_{(k-1,n-k)}$$

E la regione di rifiuto del test

$$R = \{F : F \ge F_{(k-1,n-k),(1-\alpha)}\}$$

CONFRONTIAMO TRATTAMENTI DIVERSI

SUPPONIAMO DI AVER RIFIUTATO L'IPOTESI NULLA

 \longrightarrow ESISTE UNA DIFFERENZA SIGNIFICATIVA TRA I TRATTAMENTI SPERIMENTATI

- QUALI DIFFERISCONO?
- QUALE É IL TRATTAMENTO MIGLIORE?

CONFRONTIAMO T_k CON T_l

$$\begin{cases} H_0 : \mu_k = \mu_l & (\alpha_k = \alpha_l) \\ H_1 : \mu_k \neq \mu_l & (\alpha_k \neq \alpha_l) \end{cases}$$

STIMIAMO $(\mu_k - \mu_l)$ CON $(\overline{Y}_{k.} - \overline{Y}_{l.})$

PIÚ IN GENERALE DEFINIAMO COME CONFRONTO LA QUANTITÁ $\sum c_i \mu_i$ CON $\sum c_i = 0$

STIMIAMO $\sum c_i \mu_i$ CON $\sum c_i \overline{Y}_i$.

DALL'IPOTESI
$$Y_{ij} \sim N(\mu_i, \sigma^2)$$
 AVREMO

•
$$\overline{Y}_{i.} \sim N(\mu_i, \frac{\sigma^2}{n_i})$$

•
$$C = \sum c_i \overline{Y}_i \sim N(\sum c_i \mu_i, \sigma^2 \sum_i \frac{c_i^2}{n_i})$$

• SOTTO L'IPOTESI H_0 : $\sum_i c_i \mu_i = 0$

$$t = \frac{\sum c_i \overline{Y}_i}{\widehat{\sigma} \sqrt{\sum_i \frac{c_i^2}{n_i}}} \sim t_{n-k}$$

DOVE
$$\hat{\sigma}^2 = \frac{\text{RSS}}{n-k}$$

• LA STATISTICA t É EQUIVALENTE AD UNA STATISTICA F, basta elevarla al quadrato

$$F = t^2 = \frac{(\sum_i c_i \overline{Y}_i)^2 / \sum_i \frac{c_i^2}{n_i}}{\underset{n-k}{\text{RSS}}} = \frac{\frac{\text{CSS}}{1}}{\underset{n-k}{\text{RSS}}} \sim \mathbb{F}_{(1,n-k)}$$

CSS è adesso la devianza spiegata dal particolare confronto che stiamo analizzando

• SE CONFRONTIAMO 2 TRATTAMENTI OTTENIAMO IL "CLASSICO" t-TEST

$$T = \frac{\overline{Y}_{k \cdot} - \overline{Y}_{l \cdot}}{\widehat{\sigma} \sqrt{\frac{1}{n_k} + \frac{1}{n_l}}} \sim t_{(n-k)}$$

TUTTAVIA ADESSO σ^2 VIENE STIMATO UTILIZZANDO L'INFORMAZIONE CONTENUTA NEI k GRUPPI

(gdl =
$$\sum n_i - k \neq n_k + n_l - 2$$
)

VOGLIAMO VALUTARE L'EFFETTO DI DUE SOSTANZE ATTIVE (A e B) SULLA CAPACITÁ D'ATTENZIONE IN INDIVIDUI SANI. CIASCUN SUGGETTO VIENE SOTTOPOSTO AD UN TEST REGISTRANDO IL NUMERO DI ERRORI COMMESSI

	A_1	A_2	A_3	A_{4}	Totale
	CONTR.	A	B	A + B	
	1	12	12	13	
	8	6	4	14	
	9	10	11	14	
	9	13	7	17	
	7	13	8	11	
	7	13	10	14	
	4	6	12	13	
	9	10	5	14	
\overline{x}	6.750	10.375	8.625	13.70	9.875
$\hat{\sigma}^2$	8.214	8.839	9.696	2.786	7.384

TABELLA ANOVA

FONTE DI	SS	G.d.I.	MS
VARIAZ.			
MODELLO	212.75	3	70.92
RESIDUA	206.75	28	7.384
TOTALE	419.5	31	

$$F = \frac{70.92}{7.384} = 9.60$$
 p-value < 0.001

RIFIUTIAMO L'IPOTESI NULLA \longrightarrow ESITE ALMENO UNA DIFFERENZA

3 QUESITI:

- (i) IN MEDIA LE SOSTANZE IN SPERIMENTAZIONE HANNO UN QUALCHE EFFETTO SULLA CAPACITÁ DI ATTENZIONE?
- (ii) IL NUMERO DI ERRORI AUMENTA SE LE SOSTANZE VENGONO SOMMINISTRATE CONTEMPORANEAMENTE?
- (iii) L'EFFETTO DELLE DUE SOSTANZE É SIMILE?

3 CONFRONTI

$$H_0(1)$$
: $\mu_1 = (\mu_2 + \mu_3 + \mu_4)/3$
 $\mu_1 - 1/3\mu_2 - 1/3\mu_3 - 1/3\mu_4 = 0$

$$H_0(2): \mu_4 - 1/2\mu_2 - 1/2\mu_3 = 0$$

$$H_0(3): \mu_2 - \mu_3 = 0$$

NEL CASO DEL PRIMO CONFRONTO AVREMO

$$c_1 = \overline{y}_{1.} - 1/3\overline{y}_{2.} - 1/3\overline{y}_{3.} - 1/3\overline{y}_{4.} = -4.167$$

$$t = \frac{-4.167}{\sqrt{7.384}\sqrt{\frac{1}{8}+\frac{(-1/3)^2}{8}+\frac{(-1/3)^2}{8}+\frac{(-1/3)^2}{8}}} = -3.759 \longrightarrow \text{p-value} = 0.002$$

• POSSIAMO RIASSUMERE I 3 CONFRONTI PIANIFICATI COME SEGUE

	A_1	A_2	A_3	A_3
\overline{x}_i	6.75	10.37	8.62	13.75
c_{i1}	1	-1/3	-1/3	-1/3
c_{i2}	O	-1/2	-1/2	1
c_{i3}	0	1	-1	0

	C	$\sum_i c_i^2$	CSS	F	t	\overline{p}
$H_0(1)$	-4.167	4/3	104.2	14.1	-3.755	0.002
$H_0(2)$	4.250	3/2	96.33	13.0	3.606	0.002
$H_0(3)$	1.750	2	12.25	1.66	1.288	0.210

QUANDO DUE CONFRONTI SONO ORTOGONALI?

$$C_k = \sum c_i \overline{Y}_i$$
. $C_l = \sum c_i \overline{Y}_i$.

$$E(C_kC_l) = E(C_k)E(C_l)$$
 INDIPENDENZA TRA V.A. NORMALI

$$\sum_{i} \frac{c_{ik}c_{il}}{n_{i}} \; \stackrel{\updownarrow}{=} \; \text{0 INDIP. STATISTICA}$$

SE
$$n_i = n_j \longrightarrow$$

$$\sum c_{ik}c_{il}=0$$
 INDIPENDENZA LOGICA

 \longrightarrow In generale ogni test sulle differenze tra un dato insieme di μ_i sará ortogonale ad ogni test che coinvolge la loro somma

 $H_0(1)$: $\mu_1 - 1/3(\mu_2 + \mu_3 + \mu_4)$

 $H_0(2)$: $\mu_4 - 1/2(\mu_2 + \mu_3)$

 $H_0(3)$: $\mu_3 - \mu_2$

 QUANDO É POSSIBILE I CONFRONTI DOVREBBERO ESSERE ORTOGONALI

(IMPARIAMO A FARE DOMANDE DIVERSE)

OGNI CONFRONTO CI DICE QUALCOSA DI NUOVO

$$H_0(4)$$
 : $\mu_1 = \mu_4$: $\mu_4 - \mu_1 = 0$ ORTOGONALE A $H_0(1)$?

$$H_0(1): \mu_1 = 1/3\mu_2 + 1/3 + \mu_3 + 1/3\mu_4$$

... STRANI RISULTATI

Immaginiamo i dati osservati siano adesso

	A_1	A_2	A_3	A_{4}
\overline{x}_i	5.50	5.7	5.75	9.00
c_{i1}	3	-1	-1	-1
c_{i} 4	-1	0	O	1

	С	CSS	F	\overline{p}
$H_0(1)$	-4.0	10.67	1.21	0.29
$H_0(4)$	3.5	49.00	5.55	0.026

In verità la contraddizione è solo apparente ma l'interpretazione dei risultati non è immediata

• ABBIAMO IN TOTALE $\underline{k-1}$ CONFRONTI ORTOGONALI N.B.

$$CSS(1) + CSS(2) + CSS(3) = MSS$$

 $104.7 + 96.33 + 12.25 = 212.75$
g.d.l. 1 1 1 = 3

La devianza spiegata dai singoli confronti (se ortogonali) ricostruisce esattamente la devianza spiegata dai trattamenti

 POSSIAMO AVERE UNA F GLOBALE NON SIGNIFICATIVA E DELLE F PARTICOLARI SIGNIFICATIVE

Riducendo l'ampiezza dell'ipotesi alternativa aumenta la potenza del test che focalizza l'attenzione in una particolare direzione

SE CONTINUIAMO A FARE CONFRONTI ALLA FINE ALMENO UNO SIGNIFICATIVO EMERGE

→ ELEVATA PROBABILITÁ DI COMMETTERE UN ERRORE DI PRIMA SPECIE

ALCUNI PRINCIPI BASILARI

- I CONFRONTI DEVONO ESSERE <u>PIANIFICATI</u>
- IL LORO NUMERO DEVE ESSERE COERENTE CON I RELATIVI g.d.l.

Se insistiamo nell'esplorazione di molti confronti dobbiamo operare una correzione per molteplicità Infatti il valore di α fissato come limite di errore nel singolo test non è sufficiente. L'errore globale, cioè la probablità di commettere un errore di prima specie in almeno uno dei test (familywise error rate) sarà molto piălta. Facendo 10 confronti ciascuno con $\alpha=0.05$ la probabilità globale di errore sale a 0.40 (vere alcune assunzioni). Il principio generale è quello di ridurre il valore di α nei singoli test. Quanto?

$$r \; \mathsf{CONFRONTI} \longrightarrow \quad \alpha_i = \frac{\alpha}{r} \longrightarrow$$

 $Pr\{ {\sf UNO\ O\ PI\'U\ CONFRONTI\ SIGNIFICATIVI} | H_0 \} < \alpha)$ ma diventiamo molto conservativi. Meglio rivolgersi ad uno statistico . . .